Phase-dependent filtering of sensory information in the oscillatory olfactory center of a terrestrial mollusk.

نویسندگان

  • T Inoue
  • S Watanabe
  • S Kawahara
  • Y Kirino
چکیده

With electrophysiological techniques, we found phase-dependent modification of the efficacy of signal transmission in the procerebrum (PC), the oscillatory olfactory center, of the terrestrial mollusk Limax marginatus and elucidated its neuronal mechanism. Previous studies have indicated that about 10(5) PC neurons can be classified into only two types: bursting (B) neurons and nonbursting (NB) neurons, and both types of neurons have ongoing and phase-locked periodic oscillation of their membrane potentials. On olfactory nerve stimulation, excitatory postsynaptic potentials (EPSPs) were evoked with a constant latency in NB neurons, while EPSPs with a variable latency were evoked in B neurons. These findings suggest a monosynaptic connection from the olfactory nerve to NB neurons, but a polysynaptic connection between the olfactory nerve and B neurons. This polysynaptic transmission is most likely mediated by NB neurons because the olfactory nerve makes synaptic connection only with NB neurons in the PC. The latency of the evoked EPSPs in B neurons depended on the phase of the PC oscillatory activity, presumably because of the oscillation of the intervening NB neurons. These results suggest that the efficacy of olfactory nerve-B neuron polysynaptic transmission is regulated by the activity level of the phasically oscillating NB neurons. Thus, the intrinsic oscillation in the PC can serve as a filter for olfactory information conveyed from the olfactory nerve as a train of neuronal spikes. This filtering system may also produce a phase-dependent modification by the olfactory input of the PC oscillation frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two types of network oscillations and their odor responses in the primary olfactory center of a terrestrial mollusk.

We identified two classes of network oscillations with different frequency ranges in the tentacle ganglion (TG), the primary olfactory center of the terrestrial mollusk Limax marginatus, and investigated the responses of these oscillations to odor inputs. A recent study indicated that there are serotonergic terminals in the TG. We found that when serotonin was applied to the TG, the spontaneous...

متن کامل

Phase-Dependent Modulation of Oscillatory Phase and Synchrony by Long-Lasting Depolarizing Inputs in Central Neurons

Oscillatory neural activities have been implicated in various types of information processing in the CNS. The procerebral (PC) lobe of the land mollusk Limax valentianus shows an ongoing oscillatory local field potential (LFP). Olfactory input increases both the frequency and spatial synchrony of the LFP oscillation by a nitric oxide (NO)-mediated mechanism, but how NO modulates the activity in...

متن کامل

Serotonin and NO complementarily regulate generation of oscillatory activity in the olfactory CNS of a terrestrial mollusk.

Synchronous oscillation of membrane potentials, generated by assemblies of neurons, is a prominent feature in the olfactory systems of many vertebrate and invertebrate species. However, its generation mechanism is still controversial. Biogenic amines play important roles for mammalian olfactory learning and are also implicated in molluscan olfactory learning. Here, we investigated the role of s...

متن کامل

Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk.

Spontaneous or odor-induced oscillations in local field potential are a general feature of olfactory processing centers in a large number of vertebrate and invertebrate species. The ubiquity of such oscillations in the olfactory bulb of vertebrates and analogous structures in arthropods and mollusks suggests that oscillations are fundamental to the computations performed during processing of od...

متن کامل

Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex

Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 2000